Working Towards	On Track	Greater Depth
Count up in $3 \mathrm{~s}, 6 \mathrm{~s}, 25 \mathrm{~s}$ and 1000s from 0.	Count in 6s, 7s, 9s 25s and 1000s from 0 (up/back).	Generalise using knowledge of $6 \mathrm{~s}, 7 \mathrm{~s}, 9 \mathrm{~s} 1000$ s and beyond (e.g.I know that 18 is a multiple of 6 therefore is must also be a multiple of 3 , I know that 77 is multiple of 7 therefore 7777 will be too). Know why other tables can't help with 7s and 11s.
Find 1000 more than any given number.	Find 1000 more or less than any given number mentally.	Justify their method when adding and subtracting multiples of 1000s mentally (e.g. 4000).
Know how to partition 3-digit and 4-digit numbers.	Recognise the value of each digit in a 4 digit number.	Justify how larger and smaller numbers can be created using the same 4 digits.
Order a set of 4-digit numbers.	Compare and order a set of numbers beyond a 1000 (e.g. using number lines and <>>).	
Read 4-digit numbers in numerals.	Read and write 4-digit numbers in numerals and words (including accurate spelling).	
Begin to use strategies to estimate larger sets of objects.	Identify, represent and estimate numbers using groupings (tallies, groups of $25,50,100$).	Explain how their methods make estimating and grouping of larger sets of objects more efficient.
Round to the nearest 10 using number lines.	Round any number to the nearest 10, 100 and 1000 (using number lines).	Use rounding as part of problem solving.
Read Roman Numerals to 10 (X).	Read Roman numerals to 100 (I to C).	Argue which system is more effective - Roman numerals or the Arabic system we use today.
Know that our number system has changed over time.	Know that over time, the numeral system changed to include the concept of zero and place value.	
	Solve number and practical problems using all of the above and with increasingly larger positive numbers.	
Effectively choose when it is more efficient to calculate mentally rather than use a written method (e.g. 1000+9 or 1020-19).	Add and subtract numbers with up to 4 digits using the formal written methods of addition and subtraction where appropriate.	Explain how their approach to a calculation depends on the context and range of numbers.
Add and subtract 3-digit numbers using formal written methods in a range of real life contexts and single step problems.	Solve addition and subtraction two-step problems in contexts.	Use formal methods of addition and subtraction accurately in a range of real life contexts.
Use inverse operations to check their answers.	Estimate and use inverse operations to check answers to a calculation.	Justify their approaches to multi-step addition and subtraction problems and use inverse operations across the steps to check their answers.
Solve missing number addition and subtraction problems.	Decide which operations and methods to use and why within problem solving.	Spot calculations within real life scenarios and role play (e.g. shop or bank corner).
Recall and use multiplication facts for the $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}$ and 10 s in a range of real life contexts and role play.	Recall multiplication and division facts for multiplication tables up to 12 $\times 12$.	Explain links between known tables and other multiples (e.g. 24s, 20s, 18s, 33s etc.).
Use a multiplication square for remaining tables to help solve problems.	Use place value, known and derived facts to multiply and divide mentally.	Explain what happens when you multiply by 0 and divide by 1,using examples to explain]their reasoning.
	Multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.	
	Recognise and use factor pairs.	Identify common factors within a set.
Use commutativity to make mental multiplication easier.	Understand commutatively in mental calculations.	
Use partitioning with written multiplication including 2-digit by 1-digit numbers.	Multiply two-digit and three-digit numbers by a one-digit number using formal written layout. Solve problems involving multiplying and adding.	Solve multi-step problems that involve mixed calculations and explain their methods.

Use multiplication and division to solve problems in a range of contexts.							
				Use the distributive law to multiply two digit numbers by one digit.			Reason about their methods when using the distributive law and explain how this makes mental calculation easier.
Spot relationships between integer ratios based on 2,3,5 and 10 (i.e. 1:2 or 3:9)				Solve harder correspondence problems such as n objects are connected to mobjects.			Prove an hypothesis using scaling as evidence using n:m notation.
				Find the area of rectilinear shapes by counting squares.			Explain how to find a range of different areas all with the same perimeter.
Number	Calculation	Fractions	Measures	Geometry	Statistics	Once It is assumed child has achieved	objective has been covered it becomes Bold this objective at 'on track' unless they are indicated at either WT or GD
Mathematics							
Working Towards						ck	Greater Depth
Spot equivalence involving ${ }^{1 / 3} \mathrm{~s}, 1 / 2 \mathrm{~s}, 1 / 4 \mathrm{~s}$ and ${ }^{1 / 10} \mathrm{~s}$.				Recognise and show, using diagrams, families of common equivalent fractions.			
Count up and down in taught fractions, including hundredths.				Count up and down in hundredths.			Create problems involving hundredths.
Know that ${ }^{1} 100$ arises by dividing an object or quantity by 100 .				Recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.			
				Use fractions to divide quantities, including non-unit fractions where the answer is a whole number.			Explain the link between fractions and multiplication (e.g. $20 \times 1 / 4=5$ is equivalent to ${ }^{20} / 4=5$).
Add and subtract fractions with the same denominator where the answer goes beyond one whole (e.g. 1^{1} /3).				Add and subtract fractions with the same denominator.			
Know that fractions have a decimal equivalent.				Recognise and write decimal equivalents of any number of tenths or hundredths.			Explain how to calculate decimal equivalents of simple fractions.
				Recognise and	e decimal	ts to $1 / 2,1 / 4,3 / 4$.	
				Find the effe	ividing a o	-digit number by 10 and 100 .	Reason about what happens to the value of numbers as they pass the decimal point when multiplying or dividing by 10 and 100 .
				Round decim	th one dec	to the nearest whole number.	
				Compare nu decimal plac	with the s	ber of decimal places up to two	Compare numbers with different decimal places and explain their reasoning.
Know the function of the decimal point and relate this to measures and money.				Solve simple problems involving increasingly harder fractions and some decimals (e.g. time, money, measures)			
Identify the context of a measure problem				Estimate, compare and calculate different measures, including money in pounds and pence in order to solve problems.			Justify and explain their approach to solving problems that involve mixed measures.

With support answer questions about bar charts, pictograms and
tables.

Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.

Justify choices when using graphs, including how this is influenced by continuous or discrete data. (e.g. I wouldn't use a line graph to show the results of a poll on favourite pet)

